Lecture Notes: 4-8 Newton's Method
 (PART 2)

Recall from the Previous Class:

We used Newton's Method to estimate the positive root of the function $f(x)=x^{3}-5 x$. (Graphed below.)

QUESTION 1: What is the "formula" we used in Newton's Method? That is, if x_{n} is an estimate of a root, how does one calculate the next (better) estimate, x_{n+1} ?

QUESTION 2: Yesterday, we began our estimation by "guessing" the root was about 3. (That is, we chose $x_{1}=3$.) How much did this choice matter? Are there any truly bad guesses or will any guess eventually get us to the desired root? Explain your conclusion.

Question 3: What sort of conditions do you think need to hold in order to make Newton's Method work and work properly?

Practice Problems: For each problem below, use Newton's Method to answer the question. Explain how you chose the initial guess x_{1}. Use your calculator to graph the function and identify the root(s) you approximated.

1. Approximate any zeros of $f(x)=e^{x}+x$ using 3 iterations of Newton's Method.
2. Approximate any zeros of $g(x)=x-2 \sin x$ accurate to at least 9 decimal places.
3. Estimate $\sqrt[6]{7}$ correct to 5 decimal places. [Note: you must construct an appropriate $f(x)$ here.]
4. Approximate the x-value of the point of intersection of $f(x)=-x / 3$ and $g(x)=\ln x$. Continue the process until two successive approximations differ by less than 0.001
